Math 665 « FINAL EXAM ¢ May 13, 2010

1) Categorize all zeros and singularities of the following functions, find two lowest-order non-zero terms in the
Laurent or Taylor series of f(z) near the given point zo, and state the region on which the corresponding
expansion is valid:

sinh z

(a) f(2)= at 2o =0

e Zerosat z, =izk, kKeZ,k#0
e Polesoforder2atcoszk=1 = z, =27k, keZ,k#0

e Simple pole at z = 0, with the following Laurent expansion, converging in 0 <|z | <2n
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Residue equals 2, as it should

(b) f(2)= exp(1/2)

at zo =1 (branch logsz satisfies —t < arg z <m)

s

e Branch point at z=0 (note: it is not an essential singularity since it is not isolated)
e Branch cut along the negative real axis

e Simple pole at z=1, with the following Laurent expansion, converging in 0 <|z-1| <1

Denotez =1+¢:
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This agrees with the value of the residue (use N(z0)/D’(20)):



2) Describe all singularities of the integrand inside the integration contour, and calculate each integral. Each
integration contour is a circle of radius 1/2:
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@) CJS cos(l/2) :

1z1=1/2

e Simple poles at cos(1/z) =0 :>L=7r(k+lj =17, =;,keZ
z, 2 z(k+1/2)

e These poles have an accumulation point (a cluster point) at z=0

To calculate the integral, we have to use the mapping {=1/z
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Residue at zero equals 1/2, most easily calculated using series expansion:
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cos(1/2) dz
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b)

lz1=1/2

e The only singularity is the essential singularity at z=0. Therefore, we have to use the series expansion:
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The residue is obviously 1, so the integral over any circle surrounding the origin equals 2zi
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3) Calculate any two of the following three integrals. Carefully explain each step.

T cosax — cosbx r(b—a :
(a) j > dx = ( 5 ), where a > 0,b > 0 are real constants (use indented contour)
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Thus, in the limit ¢ - 0 and R — oo, we obtain (here P.V. stands for Cauchy Principal Value):

+0 _jax ibx

P.V.I e X—2e dx — J-cos(ax)xzcos(bx) dX+i PV, J- sm(ax)x sin(bx) dx —
=0
N '[ cos(ax) —zcos(bx) dx — n(b—a)
0 X 2
Todx r . . . :
(b) J. = , where m > 0 is an integer (integrate around a circular sector)
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Integrate around circular sector with angle 2/m, since along the top part of sector z" = ('>*™x)"
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, @> 0 (Intergate log, z/ (z* +a”) around a semi-circular indented contour)
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Take the real part, and divide by 2:

4) Some of the statements in (a)-(d) below are false. For each false statement, give a counter-example proving
that it isn’t true. For each true statement, state the theorem from which it follows:

(a) If the integral of f(z) is zero over any closed contour in domain D, then the second derivative of f(z)
exists in D, even if D is not simply-connected

True: this follows from the Morera’s Theorem, combined with the Cauchy Integral Formula.

(b) If f (2) has a derivative in arbitrary domain D, it must also have an anti-derivative everywhere in D

Not true: only holds for simply-connected domains (in which case it follows from the Cauchy-Goursat
theorem, and expression for anti-derivative). Consider for instance f(z)=1/z. It is analytic in any ring
centered at the origin, but its anti-derivative has a branch cut crossing any such ring.

(c) Two contour integrals of f(z) over different open contours connecting the same two points are equal if
f(z) is analytic along each of these two contours

Not true, since there may be a singularity with non-zero residue between the two contours: in this case
the difference between the two integrals is a closed-contour integral with non-zero value determined by
the residue(s)

(d) Integral of an analytic function f(z) over a circle equals twice the integral over a semi-circle.

Not true, unless the anti-derivative is even with respect to semi-circle center, in which case both
integrals equal zero. Otherwise, the closed-contour integral is zero, while the semi-circle integral is non-
zero. Consider for instance f(z)=C=const (or any even power of z) over a circle centered at the origin.




5) Find coefficients C_2 and C_4 in the Laurent series for f(z)=sec z converging in the ring n/2<|z|<3m/2
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6) Show that transformation w = E(_a + —] , where o is a real constant, maps the interior of the unit circle
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into the exterior of the ellipse (%j + (%j =1

Consider the mapping of the unit circle, z=exp(i0):
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From the basic trigonometric identity cos> @ +sin® @ = 1, we obtain the result +| — =1
cosha sinh

To see that the interior of the unit circle is mapped to the exterior of this ellipse, consider the mapping of z=0:
because the map has a pole at z=0, it is mapped to infinity, which is exterior to the ellipse in the w-plane

7) Find and sketch the domain of uniform convergence of series F(z)= Z 7" sin Nz (use exponential
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The two geometric series converge if the two geometric ratios are less than 1 in modulus:
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